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Abstract: In this paper we conduct a numerical study of the supersymmetric O(3) non-

linear sigma model. The lattice formulation we employ was derived in [1] and corresponds

to a discretization of a twisted form of the continuum action. The twisting process exposes

a nilpotent supercharge Q and allows the action to be rewritten in Q-exact form. These

properties may be maintained on the lattice. We show how to deform the theory by the

addition of potential terms which preserve the supersymmetry. A Wilson mass operator

may be introduced in this way with a minimal breaking of supersymmetry. We additionally

show how to rewrite the theory in the language of Kähler-Dirac fields and explain why this

avenue does not provide a good route to discretization. Our numerical results provide

strong evidence for a restoration of full supersymmetry in the continuum limit without fine

tuning. We also observe a non-vanishing chiral condensate as expected from continuum

instanton calculations.
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1. Introduction

Supersymmetric field theories are an integral part of modern theories of particle physics.

They provide a framework for solving the gauge hierarchy problem [2] by eliminating many

divergences typical of quantum field theories through the cancellation between fermionic

and bosonic loops. Moreover in the large N limit, it is known [3, 4] that supersymmetric

gauge theories are related to quantum gravity and string theory. Two dimensional sigma

models on the other hand are important because they have a rich mathematical structure,

and moreover there exists a deep rooted analogy between them and four dimensional Yang

Mills theories [5]. Indeed the former can serve as perfect theoretical laboratories to test

methods and approaches developed for solving the problems of these far richer and more

complicated theories. For example, the magnetic monopole and dyon in the gauge theory

correspond to the kink and Q-kink solution of sigma models. In many cases the interesting

physics lies in non-perturbative regimes which motivates use of the lattice to study these

systems.

Unfortunately generic discretizations of supersymmetric theories break supersymmetry

explicitly and necessitate fine tuning the couplings to a (usually large) number of lattice
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operators in order to approach a supersymmetric continuum limit. Recently, attention

has turned to formulations which aim to preserve one or more exact supersymmetries at

non-zero lattice spacing.1 The hope is, this residual supersymmetry will shield us from

the appearance of relevant operators in the lattice effective action which violate the full

symmetry group thus reducing or possibly even eliminating such fine tuning problems.

Two distinct approaches in this direction have been followed; in the first pioneered by

Kaplan and collaborators, the lattice theory is constructed by orbifolding a certain su-

persymmetric matrix model and then extracting the lattice theory by expansion around

some vacuum state [7 – 10]. This has recently been extended to the the interesting case

of gauge theories in two dimensions with matter fields interacting via a superpotential

in [11]. The second approach relies on discretizing a twisted version of the supersym-

metric theory. Twisting was first introduced by Witten [12] in the context of topological

field theories. It consists of constructing a new rotation group from a combination of

the original rotation group and part of the R-symmetry associated with the extended

SUSY. The supersymmetric field theory is then reformulated in terms of fields which

transform as integer representations of this new rotation group [13 – 16]. In flat space

one can think of the twisting as a merely exotic change of variables in the theory. When

applied to the supersymmetry algebra, a scalar nilpotent supercharge is exposed. Further-

more as argued in [17, 18] the twisted superalgebra implies that the action rewritten in

terms of these twisted fields is generically Q-exact. In this case it is straightforward to

construct a lattice action which is Q-invariant provided only that we preserve the nilpo-

tency of Q under discretization. An other approach in the same direction [15, 19], at-

tempts to preserve all the twisted supercharges on the lattice by introducing a non-trivial

commutation relation between the coordinates in superspace. However, this formulation

remains controversial after a recent paper [20] pointed out an inconsistency appearing

in this method when applied to a toy quantum mechanical model. Finally, although

the orbifolding and the twisting approaches appear different, Ünsal [21] recently showed

that the former approach reproduces the twisted Yang-Mills theories in the continuum

limit.

The twisting approach to constructing lattice theories was initially developed for theo-

ries without gauge symmetry [22, 23]. An implementation for supersymmetric lattice gauge

theories based on balanced topological field theories was given by Sugino [24]. An approach

emphasizing the geometrical nature of the twist and employing Kähler-Dirac fermions was

then developed by Catterall [17, 25] to construct super Yang-Mills theories in two and four

dimensions. The use of Kähler-Dirac fermions for formulating lattice supersymmetry was

first proposed in [26].

2. The 2D continuum action

As was shown in [1], the action of a general two dimensional sigma model with N = 2

1We primarily discuss Euclidean formulations - for recent work on Hamiltonian approaches see [6]

– 2 –



J
H
E
P
1
0
(
2
0
0
6
)
0
6
3

supersymmetry may be written, using complex coordinates, in the twisted form

S = β

∫

d2σ
(

2h+−gIJ∂+φI∂−φJ

− h+−gIJηI
+D−ψJ − h+−gIJηI

−D+ψJ +
1

2
h+−RIIJJηI

+ηI
−ψJψJ

)

(2.1)

with

D+ψJ = ∂+ψJ + ΓJ
KL∂+φKψL (2.2)

The requirement of N = 2 supersymmetry forces the target manifold to be Kähler in

which case gIJ = gĪ J̄ = 0 and the only non-zero Christoffel symbols are ΓI
JK and ΓĪ

J̄K̄
(see

appendix A). This action is invariant under four supersymmetries as expected for a theory

with N = 2 supersymmetry in two dimensions. In the twisted construction we focus on a

single hermitian twisted supercharge Q whose action on the fields is given by


















QφI = ψI QφĪ = ψĪ

QψI = 0 QψĪ = 0

QηI
+ = BI

+ − ΓI
KJψJηK

+ QηĪ
− = B Ī

− − ΓĪ
K̄J̄

ψJ̄ηK̄
−

QBI
+ = −ΓI

JKψJBK
+ − RI

KJ̄L
ψKψJ̄ηL

+ QB Ī
− = −ΓĪ

J̄K̄
ψJ̄BK̄

− − RĪ
J̄LK̄

ψJ̄ψLηK̄
−

(2.3)

The action of the remaining charges of the N = 2 twisted supersymmetry is given in

appendix B. The field BI
+ is an auxiliary field introduced to linearize the transformations

and render the transformation nilpotent off-shell. It has been removed from the action in

eq. (2.1) by employing its equation of motion BI
+ = ∂+φI . The invariance of the action

under this supercharge Q follows just from the nilpotency of the latter and the fact that

the above action is Q-exact — that is it can be written as the Q-variation of some function

which, borrowing from BRST gauge fixing terminology, can be termed a gauge fixing

fermion [1].

3. The 2D lattice action

Surprisingly translating the action in (2.1) to the lattice is pretty straightforward. Indeed,

as the twisted Q-symmetry makes no reference to derivatives of the fields its nilpotent prop-

erty is preserved when continuum fields indexed by a continuous coordinate are replaced by

lattice fields carrying a discrete index. We then obtain the supersymmetric lattice action

by just replacing the continuum derivative by a symmetric finite difference

S = β
∑

x

(

2h+−gIJ∆s
+φI∆s

−φJ

− h+−gIJηI
+D−ψJ − h+−gIJηI

−D+ψJ +
1

2
h+−RIIJJηI

+ηI
−ψJψJ

)

(3.1)

where now,

D+ψJ = ∆s
+ψJ + ΓJ

KL∆s
+φKψL (3.2)

and ∆s
± = ∆s

1± i∆s
2 where ∆s

µ = 1
2 (∆+

µ +∆−
µ ) and ∆± are the usual forward and backward

difference operators. However the lattice action in the form shown in eq. (3.1) suffers from
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the usual fermion doubling problem. Indeed it is easy to see that the kernel of the (free)

lattice Dirac operator constructed this way contains extra states which have no continuum

interpretation. For instance consider the fermionic part in (3.1). If we ignore the interaction

term in (3.2) then one finds that in Fourier space the kernel of ∆s
+ corresponds to solving

0 = eikx[sin k1 + i sin k2] (3.3)

Besides the solution (k1, k2) = (0, 0), one also has (0, π), (π, 0) and (π, π). The doubling

problem is made worse because supersymmetry propagates it to the bosonic sector. There

are two obvious lines of approach one may take to avoid this problem. One is rewrite the

continuum theory in the language of Kähler-Dirac fields and try to utilize the discretization

procedure developed in [17] to construct the lattice theory. This approach is reviewed in

the next section where it is shown that such a procedure runs into difficulties.

The obvious alternative, which we have pursued here, is to add some form of Wilson

mass term to lift the mass of the doubles up to the scale of the cut-off. However an ad hoc

addition of such a Wilson term will break supersymmetry explicitly in an uncontrolled way

thus spoiling our goal of preserving an element of SUSY on the lattice. Fortunately, it was

shown [28, 29] that in the case where the Kähler manifold possesses some isometries, it is

possible to add potential terms that involve the holomorphic Killing vectors V I associated

to those isometries in such a way as to keep the action Q-exact. By a careful choice of such

potential terms we may add Wilson operators which accomplish the task of rendering the

doublers heavy. In complex coordinates the possible terms are,

∆S = β
∑

x

[

λ2V IVI + λ2ψI∇IVJψJ − 1

4
h+−ηI

−∇IVJηJ
+ + h.c

]

(3.4)

Here, λ2 is an arbitrary parameter. Here, we choose λ = h+− = 1
2 . To keep the action

Q-exact the action of the twisted supersymmetry must be changed.



















QφI = ψI

QψI = V I

QηI
+ = BI

+ − ΓI
JKψJηK

+

QBI
+ = −ΓI

JKψJBK
+ + 1

2RI
JKLψKψJηL

+ + DKV IηK
+

(3.5)

Q is no longer nilpotent but Q2 just amounts to a Lie derivative with respect to the Killing

vector field. Indeed one can easily show that,



















Q2φI = V I

Q2ψI = ∂JV IψJ

Q2ηI
+ = ∂JV IηJ

+

Q2BI
+ = ∂JV IBJ

+

(3.6)

To introduce a mass term would require utilizing a Killing vector of the form

V I = imφI (3.7)
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It should be clear that the transformation induced by such a Killing vector corresponds to a

infinitessimal phase rotation on the complex fields and can be seen to be a good symmetry of

both the continuum and lattice actions. Many Kähler manifolds possess metrics invariant

under such a phase rotation, for example, the CPN theories and specifically the CP 1 ∼
O(3) model considered in detail later. In the latter case the theory actually possesses three

isometries corresponding to the global O(3) symmetry of the theory - the phase rotation

associated with the Killing vector eq. 3.7 corresponds to invariance under rotations about

the z-axis.

To remove the doubles in lattice regularizations of such models we have employed such

a twisted mass term with the constant mass parameter replaced by a Wilson operator

m → mW where

mW =
1

2

(

∆+
+∆−

− + ∆+
−∆−

+

)

(3.8)

This leads to the additional terms in the action

∆S = β
∑

x

[

λ2mW φImW φI + λ2ψI∇IgJJmW φJψJ − 1

4
h+−ηI

−∇IgJJmW φJηJ
+ + h.c

]

(3.9)

The generalized phase rotation associated with mW no longer corresponds to an exact

isometry of the metric and hence the modified action, while still Q-exact, is no longer

exactly invariant under the generalized Q-symmetry. Novertheless we will argue that the

twisted Wilson operator acts as a soft breaking term and hence should not affect the

renormalization of the lattice theory for small enough lattice spacing.

The argument goes as follows. In the continuum one is used to thinking of mass terms

as serving only to break supersymmetry softly. This expectation relies on the idea that

any mass parameter will be small compared to the U.V cut-off in the theory. However,

the generic Wilson operator in a lattice theory does not satisfy this property since the

potential doublers in the theory pick up a mass from the Wilson term on the order of

the cut-off. Thus addition of such Wilson terms generically will lead to a hard breaking

of supersymmetry and it will be necessary to fine tune additional operators to recover a

supersymmetric continuum limit. However, the twisted mass operator we use here does not

have this property — in the limit of small a the propagators are dominated by contributions

from a state near the origin of the Brillioun zone and a set of would be doublers. The latter

contribution does not break supersymmetry since the doublers contribute like additional

states with a constant twisted mass. Such a mass deformation preserves the Q-symmetry

of the lattice action.

The soft character of the breaking can be seen in yet another way. For small lattice

spacing a (large β) we can expand the bosonic action to quadratic order. Subsequently

integrating over the bosons yields a determinant det(m2
W − DS

+DS
−). But at one loop this

determinant is cancelled by an identical fermionic contribution det(M) where

M =

(

mW −DS
+

−DS
− mW

)
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Thus the lattice theory appears both double free and supersymmetric at large β. These

arguments lead us to expect the Q-symmetry to be restored at large coupling β without

additional fine tuning. If this is the case then simple power counting arguments lead us to

conclude that the only (marginally) relevant counter terms must take the Q-exact form

O = Q
(

ηiαfij (φ)
(

∂αφj + Bj
))

(3.10)

where we have reverted to a formulation using real fields. General covariance ensures that

fij is a tensor which may then be taken to represent a quantum renormalization of the

target space metric tensor. This counterterm structure would be consistent with a lattice

model which exhibits N = 1 supersymmetry in the continuum limit. The restoration of full

N = 2 supersymmetry appears to require additional constraints. Luckily, such constraints

are present in the form of additional discrete symmetries of the lattice action. Consider

the classical action in Kähler form given in eq. 3.1. It is trivial to see that this action is

also invariant under the finite transformations

ψI → iψI

ψI → −iψI

ηI
+ → iηI

+

ηI
− → −iηI

− (3.11)

Actually, this additional symmetry arises from the Kähler structure of the target space

appearing in the classical action [30]. This additional symmetry of the lattice model then

ensures that only counterterms compatible with a Kähler target space survive in the quan-

tum effective action. But as was shown in [30] any model with N = 1 supersymmetry and

a Kähler target space automatically possesses N = 2 supersymmetry. Thus on the basis

of these arguments we expect that no additional fine tuning is needed to regain the full

supersymmetry of the continuum model which as will be seen later, is confirmed by our

numerical results.

4. Kähler-Dirac reformulation

Recent work has emphasized the geometrical nature of certain twisted super Yang-Mills

theories [17, 25]. In these constructions all fields appear as antisymmetric tensors with the

twisted fermions arising as components of a geometrical object called a Kähler-Dirac field.

The arguments leading to this geometrical interpretation are quite general, depending only

in the number of supercharges and R-symmetry, and imply that it should be possible to

formulate the twisted sigma models also in this language. Furthermore, the geometrical

construction is key to a successful discretization of the Yang-Mills theory avoiding fermion

doublers [27]. Thus such a reformulation of the sigma model potentially offers another

way to build a supersymmetric lattice theory without encountering fermion doubling. As

such it would offer an alternative to the addition of Wilson operators as described in the

previous section. As we will see this reformulation can indeed be done in the continuum

but an obstruction prevents any simple translation of the continuum theory to the lattice.

– 6 –
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As shown in, for example, [25] the basic N = 2 twisted supermultiplet in two di-

mensions involves two Kähler-Dirac fields, a bosonic one Φ = (φ,Aµ, B12) whose p-form

components commute and fermionic one Ψ = (λ, ηµ, χ12) with grassmann valued forms.

Initially we will consider a flat target space and consider only the continuum theory. The

action of the nilpotent twisted supersymmetry is simply

Qφ = λ Qλ = 0

Qηµ = Aµ QAµ = 0

QB12 = 0 Qχ12 = 0

(4.1)

These transformations are essentially the same as the corresponding Yang-Mills variations

except that the field Aµ plays the role of a multiplier field in the sigma model case (and

hence has zero variation under Q). The twisted action can be written as the Q-variation

of some gauge fermion Λ. The most general gauge fermion which is linear in the fermion

fields, contains at most one derivative, and is not a Q-singlet is

Λ =

∫

d2xηµ [c1Aµ + c2∂µφ + c3∂νBµν ] (4.2)

Furthermore, by a simple rescaling of the fields I can set c1 = 1
2 and c2 = c3 = 1. Carrying

out the Q-variation and integrating out the multiplier field Aµ (along the imaginary axis)

leads to the action

S =

∫

d2x

[

1

2
(∂µφ + εµν∂νB12)

2 − ηµ∂µλ − χµν∂[µ ην]

]

(4.3)

As in [25] the twisted fermionic action is of Kähler-Dirac form. Writing u1 = φ, u2 = B12

the bosonic action can now be rewritten

SB =

∫

d2x
1

2

[

(

∂µui
)2

+ εijεµν∂µui∂νu
j
]

(4.4)

where the implied summations over Roman indices run from i = 1, 2. This action can be

simplified by introducing the projection operator

P+iν
jµ =

1

2

(

δi
jδ

ν
µ + εi

jε
ν
µ

)

(4.5)

where the distinction between upper and lower indices is, for the present, immaterial. The

bosonic action now reads

SB =

∫

d2x
[

P+iν
jµ ∂νu

j
]2

(4.6)

Proceeding in this way we can introduce a new grassman valued field which is the su-

perpartner to ui by defining ψ1 = λ and ψ2 = χ12. Similarly the original field Aµ (and

its partner ηµ) can be promoted to a field indexed by a Roman target index Aµ → A+i
µ

provided the field is required to be self-dual under the action of this projector i.e

Ai
µ = A+i

µ = P+iν
jµ Aj

ν (4.7)

– 7 –
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In terms of these new variables the Q-transformations are now

Qui = ψi Qψi = 0

Qη+i
µ = A+i

µ QA+i
µ = 0

(4.8)

Going to complex coordinates we recover our original sigma model variations for a flat two

dimensional target space. It should be clear that the sigma model fields are essentially the

the Hodge self-dual components of the original Kähler-Dirac fields. It should also be clear

how to proceed to a more general target space. Clearly one must be able to introduce a

tensor J i
j , here just εi

j , which squares to minus the identity and is covariantly constant (so

as not to disturb the form of the Q-transformations when applied to the self-dual fields).

These requirements require the target manifold be Kähler with J i
j its complex structure. Of

course these were just the restrictions found in earlier constructions of the twisted sigma

models [1]. Keeping the simple form of the Q-transformations the twisted sigma model

action can be obtained as

S = Q

∫

d2xη+i
µ

[

∂µuj − 1

2
A+j

µ − Γj
lkη

+l
µ ψk

]

gij (4.9)

Having recast the continuum theory in this language we can return the problem of

constructing a corresponding lattice model. We see an immediate problem. To avoid

spectrum doubling we must discretize continuum derivatives with care. Specifically an

exterior derivative must be replaced by a forward difference operator D+ in the discrete

theory while the adjoint of an exterior derivative by a backward difference operator D− if

the resulting lattice theory is to be free of spectrum doubling [27]. Thus the bosonic part

of the action in eq. (4.3) must be replaced with

SB =
∑ 1

2

(

D+φ + D−Bµν

)2
(4.10)

Since the difference operators are no longer the same we can no longer introduce the

projector P+ and rewrite the theory in terms of self-dual fields. Thus the Kähler-Dirac

approach cannot be used to construct twisted lattice theories without spectrum doubling.

A similar phenomena is encountered in the Yang-Mills case where the self-dual nature of

the fields in four dimensional N = 2 super Yang-Mills prevents construction of a Q-exact

and double free lattice theory.

5. Simulations

Here we revisit the O(3) sigma model discussed in detail in [1]. The O(3) sigma model

has the advantage of being simple and can be reformulated as a twisted model with a CP 1

target space. The metric, connection and curvature take the form,

guu =
1

2ρ2
(5.1)

Γu
uu = guu∂uguu = −2u

ρ
(5.2)

Ruuuu = guu∂uΓu
uu = − 1

ρ4
(5.3)

– 8 –
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where ρ = 1 + uu. From (3.1), (3.4) and (3.8) the (effective) lattice action for a flat base

space is given by (here I = Ī = 1),

S =
∑

x

{

β

[

1

ρ2
∆S

+u∆S
−u +

1

ρ2
(mW u)(mW u) − 1

2ρ2
ηDS

−ψ − 1

2ρ2
ηDS

+ψ − 1

2ρ4
ηηψψ

+iψ[
1

2ρ2
mW + mW

1

2ρ2
− ū

ρ3
(mW u) − u

ρ3
(mW ū)]ψ

− i

4ρ2
η[

1

2ρ2
mW + mW

1

2ρ2
− ū

ρ3
(mW u) − u

ρ3
(mW ū)]η

]

+ ln[β/(2ρ2)]

}

(5.4)

where a factor of two has been absorbed into the coupling β and we have simplified our

notation by replacing φ1 → u,ψ1 → ψ, η1
+ → η and η1̄

− → η. The explicit form of the

lattice covariant derivative is

DS
+ = ∆S

+ − 2u

ρ

(

∆S
+u

)

(5.5)

Note that the new term ln[β/(2ρ2)] missing in [1], emerges from integrating out the auxiliary

fields Bi
+.2 To proceed further it is convenient to introduce an other auxiliary field σ to

remove the quartic fermion term. Explicitly we employ the identity

βV

∫

Dσe
−α

“

1

2
σσ+ σ

2ρ2
ηψ+ σ

2ρ2
ηψ

”

= e
α

2ρ4
ηηψψ

(5.6)

where V is the number of lattice sites. Thus the partition function of the lattice model can

be cast in the form

Z =

∫

DuDσDηDψe−S(u,σ,η,ψ) (5.7)

where the action is now given by

S = β
∑

x

[

1

ρ2
∆S

+u∆S
−u +

1

ρ2
(mW u)(mW u) +

1

2
σσ − 1

β
ln(2ρ2) + ΨM(u, σ)Ψ

]

(5.8)

where we have assembled the twisted fields into Dirac spinors

Ψ =

(

η̄
2i

ψ̄

)

Ψ =

(

η
2i

ψ

)

and the Dirac operator M(u, σ) in this chiral basis is

M(u, σ) =

(

1
2ρ2 mW − ū

ρ3 (mW u) + h.c 1
ρ2 (∆S

+ − 2u
ρ

(

∆S
+u

)

+ σ)

(∆S
− + 2u

ρ

(

∆S
−ū

)

− σ̄) 1
ρ2

1
2ρ2 mW − ū

ρ3 (mW u) + h.c

)

(5.9)

Notice the extra terms depending on the target space connection appearing along the

diagonal which correspond to the twisted Wilson mass operator. These were not present

in our previous paper [1].

In order to be able to simulate this model, one needs to rewrite the effective action in

a form that doesn’t involve the grassman fields. For that we integrate out the Dirac field

Ψ generating,

det
1

2 (β2M(u, σ)†M(u, σ)) (5.10)

2We thank Joel Giedt and Erich Poppitz for pointing out this factor
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The effective action is now given by,

S = βSB(u, σ) − ln(2ρ2) − 1

2
Tr ln

(

β2M †(u, σ)M(u, σ)
)

(5.11)

Clearly, the form of the fermion effective action we employ does not take into account any

non-trivial phase associated with the fermion determinant - our simulation generates the

phase quenched ensemble. We later examine the phase explicitly.

To simulate this model we used the RHMC algorithm developed by Clark and Kennedy [31].

The first step of this algorithm replaces the fermion determinant by an integration over

auxiliary commuting pseudofermion fields F and F † in the following way,

det
1

2 (β2M(u, σ)†M(u, σ)) =

∫

DFDF †e−
1

β

P

F †(M†M)−
1
2 F (5.12)

The key idea of RHMC is to use an optimal (in the minimax sense) rational approximation

to this inverse fractional power.
1

x
1

2

∼ P (x)

Q(x)

where

P (x) =

N−1
∑

i=0

pix
i, Q(x) =

N−1
∑

i=0

qix
i

Notice that we restrict ourselves to equal order polynomials in numerator and denomi-

nator. In practice it is important to use a partial fraction representation of this rational

approximation,

1

x
1

2

∼ α0 +
N

∑

i=1

αi

x + βi
(5.13)

The coefficient αi, βi for i = 1, . . . , N can be computed offline using the Remez algorithm.

Furthermore, the coefficients can be shown to be real positive. Thus the linear systems are

well behaved and, unlike the case of polynomial approximation, the rational fraction ap-

proximations are robust, stable and converge rapidly with N . The resulting pseudofermion

action becomes

SPF =
1

β

[

α0F
†F +

N
∑

i

F † αi

M †M + βi
F

]

(5.14)

In principle this pseudofermion action can now be used in a conventional HMC algorithm

to yield an exact simulation of the original effective action [32]. This algorithm requires

that we compute the pseudofermion forces. For example, the additional force on the scalar

field u due to the pseudofermions takes the form,

fu =
∂SPF

∂u
= −

N
∑

i

αiχ
†i ∂

∂u

(

M †M
)

χi

where the vector χi is the solution of the linear problem

(M †M + βi)χ
i = F
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The final trick needed to render this approach feasible is to utilize a multi-mass solver to

solve all N sparse linear systems simultaneously and with a computational cost determined

primarily by the smallest βi. We use a multi-mass version of the usual Conjugate Gradient

(CG) algorithm [33]. Note that for our simulations we have used N = 12 and an approxi-

mation that gives us an absolute bound on the relative error of 8× 10−6 for eigenvalues of

M †M ranging from 10−6 to 10.0 which conservatively covers the range needed.

5.1 Spectrum

As a check of supersymmetry, we have studied the boson and fermion propagators pro-

jected to zero spatial momentum, namely, GB(t) = Re(< u(t)u(0) >) and GF
ij(t) =<

Ψi(t)Ψj(0) >. One can then extract the lowest lying mass states by fitting these two point

functions to the form a+b cosh(mB(t−T/2)) for bosons and A(t−T/2)δij + iB(t−T/2)εij

for fermions respectively. The quantities A and B are even and odd functions of their ar-

gument and we have taken the Dirac gamma matrix in the time direction to correspond to

the usual Pauli matrix σ2. To calculate the fermion masses mF
00, mF

11, mF
01 and mF

10 we have

used the simple functions a cosh(mF
00(t−T/2)), a cosh(mF

11(t−T/2)), a sinh(mF
01(t−T/2))

and a sinh(mF
10(t − T/2)) to fit ReGF

00(t), ReGF
11(t), ImGF

01(t) and ImGF
10(t) respectively.

Figure 1 shows the bosonic and fermionic masses versus coupling β in the range 0.5 to 10.0

for different lattice sizes. While the masses are quite different at small couplings, the mass

degeneracy required by supersymmetry is recovered as we approach the continuum limit

corresponding to large coupling β.

5.2 Ward identities

Of prime interest and a stringent test of supersymmetry are the supersymmetric Ward

identities. Consider first the scalar supersymmetry Q. The Ward identities corresponding

to Q are simply expectation values of the form < QO >. The simplest of these corresponds

to the action itself, indeed as the latter is Q-exact [1], it is clear that,

−∂ ln Z

∂β
=

1

Z

∫

[DΦ]e−βSS

=
1

Z

∫

[DΦ]e−βSQΛ =< QΛ >

(5.15)

which should be zero if the action is supersymmetric.3 On the other hand using the effective

action in (5.11),

−∂ ln Z

∂β
= 0 =< SB > −2L2

β
(5.16)

Figure 2 shows a plot of β
2L2 < SB > for a range of couplings β and different lattice sizes.

While there are deviations from unity at small coupling these seem to disappear as the

coupling β is increased beyond β ∼ 4.0 and yield very strong support to exact Q-symmetry

in the continuum limit.
3Note that, this tells us that Z is independent of β, as long as β is not zero, and thus one can evaluate Z

in the large-β limit. Such a limit corresponds to the semi-classical approximation. Such an approximation

is exact in our case (this is true for Witten type theories in general)
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Figure 1: Mass spectrum for 8x8, 12x12 and 16x16 lattices

We have also looked at other Ward identities. Consider the local operator O of the

form

O = h+−gIJ(x)[η
I
+(x)∂−φJ(y) + ηJ

−(x)∂+φI(y)] (5.17)

The operator O is chosen in such a way that QO is local and leads to a 2-point func-

tion for the fermions. It is also Lorentz invariant in the base space and invariant under

reparametrizations of the target space (at least in the continuum limit where the base

difference operator becomes a true derivative). These constraints ensure the resultant su-

persymmetric Ward identity is satisfied non-trivially. In the O(3) case < QO >= 0 leads

to

< 1
2ρ2(x)

∂+u(x)∂−u(y) > + < 1
2ρ2(x)

∂+u(y)∂−u(x) > = 1
2 < 1

2ρ2(x)
η(x)∂−ψ(y) > +

1
2 < 1

2ρ2(x)η(x)∂+ψ(y) >

(5.18)
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Figure 2: Simple Ward identity

Figures 3, 4 and 5 show plots of (5.18) projected to zero spatial momentum for different

lattice sizes and coupling β = 0.5, 4 and 10.0 respectively. While for small coupling β

the Ward identities are violated they are clearly satisfied for large coupling and vanishing

lattice spacing. Notice the additional, at first sight rather startling feature; for β ≥ 4.0 the

functions are approximately independent of the coordinate separation |x−y|! Actually this

result follows from the Q-exactness of the theory. A continuum theory which is Q-exact

has an energy momentum tensor Tµν = δS
δgµν

which is also Q-exact. Furthermore, it then

follows that the correlation function of two Q-invariant operators is independent of the

metric and hence also of their separation [34]. Using the Q-variation of the η+ field in

eq. (2.3) and the equation of motion B+ = ∂+u we see that

∂+u = Qη − 2u

ρ
ψη (5.19)

The second term becomes small for large coupling β since u ∼ β− 1

2 and hence in this limit

the correlator is dominated by the leading Q-exact piece yielding the constant correlator

as we observe. Thus the Ward identity reveals not only that the scalar supersymmetry is

restored for large β but that the energy-momentum tensor and action of the theory are

also Q-exact as expected from the continuum theory.

We have also looked at the Ward identities following from the other supercharges of

the twisted N = 2 supersymmetry (see appendix B for the action of these other supersym-

metries). Indeed for the vector supercharges G± we have studied

< h+−(G+O− + G−O+) >= 0 (5.20)
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Figure 3: < QO >= 0 for 8 × 8 lattice

where,

O− = gIJ(x)ψI(x)∂−φJ(y) (5.21)

O+ = gIJ(x)ψJ (x)∂+φI(y) (5.22)

For O(3), eq. (5.20) gives,

<
1

2ρ2(x)
∂+u(x)∂−u(y) >= −1

2
<

1

2ρ2(x)
ψ(x)∂+η(y) > (5.23)

Figures 6, 7 and 8 show plots of eq. 5.23 projected to zero spatial momentum for different

lattice sizes and coupling. As for the scalar supercharge Q the Ward identities due to the

vector supercharges are broken for small coupling but appear to be restored without fine

tuning for small lattice spacing and large coupling. Again for large enough coupling these

correlation functions appear independent of the temporal coordinate. This again follows

from the fact that asymptotically we are examining the correlator of two Q-exact operators;

Qη and Qu = ψ.
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Figure 4: < QO >= 0 for 12 × 12 lattice

We have additionally examined a simpler Ward identity. Namely

1

2
〈η(x)ψ̄(y)〉 = 〈∂+u(x)ū(y)〉 (5.24)

This Ward identity arises as a result of applying the scalar supercharge Q to the operator

O′ = η(x)φ̄(y), i.e. 〈QO′〉 = 0. Figure 9 shows a numerical calculation of eq. (5.24)

projected to zero spatial momentum. While supersymmetry is broken at small β coupling

it is clearly restored as we approach the continuum limit, confirming the results we obtained

with the other Ward identities.

5.3 Fermionic condensate

In the previous section we considered Ward identities that lead to fermionic 2-point func-

tions. Here we consider Ward identities involving 4-point functions of the fermion fields. As

we will see, the physics here is richer and more complicated as these quantities can receive

contributions from instantons. Calculations in the continuum theory [35, 36] predict the
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Figure 5: < QO >= 0 for 16 × 16 lattice

presence of a vacuum condensate < 1
2ρ2 ψψ > similar to the gluino condensate in N = 1

super Yang-Mills theory. Since ψ = ΨL a single chiral component of the Dirac field we

see that the presence of such a condensate constitutes an anomalous breaking of the chiral

symmetry of the theory.

To see how this comes about in the twisted theory consider the following correlation

function

C(x − y) =< Θ(x)Θ(y) > (5.25)

where

Θ(x) = JIJψJψI(x) (5.26)

Here, JJ
I is the complex structure in the target manifold which locally takes the form iδJ

I .

It is straightforward to verify that Θ(x) is invariant under Q. Hence, as we argued earlier

the correlation function C(x− y) should actually be independent of |x − y|; C(x− y) = C

a constant. Further, using cluster decomposition, it can be shown that any non-vanishing
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Figure 6: < h+−(G+O
−

+ G
−

O+) >= 0 for 8 × 8 lattice

value for C implies a non-vanishing value for the condensate 〈Θ(x)〉 = 〈Θ〉 = ±
√

C.4 At

first glance the classical chiral symmetry of the theory would prohibit such a non-zero value

for C. However quantum anomalies can and do spoil this symmetry. As is well known, the

theory admits non-trivial classical solutions called instantons. These are given by solutions

of the equations

∂+u = 0 (5.27)

The simplest single instanton is hence given by the analytic function

u(z) =
α

z + β
(5.28)

where α and β are complex constants. There are four real zero modes associated to variation

of these parameters and hence, by supersymmetry, there will be four real fermion zero

4A word of caution here – [37, 38] shows that cluster decomposition fails in the strong coupling instanton

calculation of the analogous condensate in N = 1, D = 4 super Yang-Mills theory. Here, the topological

character of C allows it to be calculated exactly at weak coupling
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Figure 7: < h+−(G+O
−

+ G
−

O+) >= 0 for 12 × 12 lattice

modes localized in the vicinity of such an instanton. Examination of the equation D+Ψ = 0

in such a background reveals these zero modes to be chiral and such a condensation will

hence break chiral symmetry. Furthermore, since Θ is topological its expectation value can

be computed exactly in the semi-classical limit corresponding to a one loop computation

in such an instanton background. Notice that the number of fermion zero modes is just

sufficient to saturate the four point function we are considering. The result is given in [35].

A lattice calculation of this quantity is potentially very interesting as it yields information

on both the U(1) anomaly, the presence of approximate lattice instantons and, as we will

see, the dynamical breaking of supersymmetry.

In our lattice regulated O(3) model we have hence measured the four point function

< Θ >=<
1

ρ2(0)
ψ(0)ψ(0)

1

ρ2(t)
ψ(t)ψ(t) > (5.29)

The plots in figure 10. shows (5.29) projected to zero spatial momentum for different

lattice sizes and different values of the coupling β. Clearly in the large β limit < Θ(t) > is
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Figure 8: < h+−(G+O
−

+ G
−

O+) >= 0 for 16 × 16 lattice

approximately independent of t confirming the presence of a condensate.

Of course on a torus only instanton/anti-instanton pairs can exist but provided these

are well separated and the discretization errors small we can still expect a condensation

of four approximate zero modes in the vicinity of such a lattice instanton yielding a cor-

responding contribution to the local value of C. In practice the value of the correlator

is not constant as we will find contributions to C also from the anti-instanton. This is

particularly true for small lattice volumes as can be seen in the figures 10. There are also

explicit lattice supersymmetry breaking effects visible in the data at β = 0.5. Notice that

the value of the condensate for a fixed lattice volume initially grows as β is increased but

eventually turns over and decreases. We can understand this as the result of finite volume

effects which become large for large β and suppress such instanton-like configurations. No-

tice that the correlation function we plot is dimensionless and hence contains powers of the

lattice spacing a(β). We have not measured this quantity directly so it hard to assess from

figure 10 whether this condensate survives the continuum limit. We will try to address this
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Figure 9: < Q(ηxūy) >= 0 for 8 × 8 lattice

question in the next section.

We have argued that the presence of such a condensate is signal for the anomalous

breaking of chiral symmetry but it can also be viewed as an order parameter for supersym-

metry breaking. To see this notice that the condensate of the O(3) model can actually be

obtained as the Q-variation of the following operator.

Ocond =
u(x)

ρ(x)ρ2(y)
ψ(x)ψ(y)ψ(y) (5.30)

Thus a non-zero value for this quantity is equivalent to the statement < QO > 6= 0 and

indicates a dynamical breaking of supersymmetry driven by instantons rather along the

lines originally envisaged by Witten [39]. However it was pointed out in [35, 36] that

this operator Ocond is not invariant under the global O(3) symmetry of the model. It

is conjectured that supersymmetry is only violated in the unphysical O(3) non-invariant
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Figure 10: Condensate for 8x8, 12x12 and 16x16 lattices

sector of the theory. Specifically, the expectation is that any operator QO containing a

multiple of a four-fermion term and for which O is not O(3) invariant would develop a

vacuum expectation value different from zero whereas for an O(3) invariant O it would

remain zero. For a general N = 2 sigma model the notion of O(3) invariance would then

be replaced by the requirement that the operator be invariant under all possible isometries

of the target metric. It would be interesting to investigate these issues in more detail.

5.4 Phase

Up to this point we have neglected a possible phase arising in the calculation of fermion

determinant. It is not hard to show that the determinant is real since generically the eigen-

values occur in complex conjugate pairs. The exception occurs with purely real eigenvalues.

As one of these crosses the origin the sign of the determinant will change. Indeed figure 11.

indicates that this phase does undergo weak fluctuations and one has to check for its effect
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Figure 11: Distribution of phase on 16x16 lattice

on the simulation. As usual we can always compensate for neglecting the phase factor in

the simulation by re-weighting all observables by the phase factor according to the simple

rule

< O >=
< Oeiα(Φ) >α=0

< eiα(Φ)>α=0

(5.31)

Hence we examined the Ward identities we have studied in the previous section now

weighted with this phase factor. For example table 1 shows the mean re-weighted bosonic

action together with the phase quenched value for different lattice sizes and a range of

couplings β. While re-weighting typically amplifies the estimated errors it does not appear

to change the mean value for this observable at least within statistical errors. This seems

to indicate that the phase fluctuates approximately independently of the remaining part of

the measured observable leading to an, at least approximate factorization in the reweighted

observable

< O >full=
< Oeiα >α=0

< eiα >α=0
∼ < O >α=0< eiα >α=0

< eiα >α=0
=< O >α=0 (5.32)

5.5 Continuum limit

Figure 12 shows a plot for the dimensionless ratio value <1/ρ2ψψ>
mB

(mB is the lightest boson

mass) for different lattice sizes and for different values of the coupling. One can see that

an approximate plateau occurs for sufficiently small lattice spacing which we interpret as

the onset of continuum physics. The separation of the curves from different lattice volumes

we consider to be a measure of possible finite volume effects. Modulo these finite volume

questions we take this as evidence that the magnitude of the condensate is non-zero in the

continuum limit.
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β β < Sb > β < Sb >W

0.5 145.523 ± 0.286 144.464 ± 3.858

1.0 147.369 ± 0.281 148.764 ± 21.547

2.0 135.51 ± 0.281 139.749 ± 53.707

3.0 128.275 ± 0.242 122.731 ± 8.747

4.0 127.272 ± 0.329 126.933 ± 2.093

5.0 127.326 ± 0.213 127.342 ± 1.274

10.0 127.552 ± 0.299 127.164 ± 1.967

β β < Sb > β < Sb >W

0.5 321.541 ± 0.568 321.461 ± 8.984

1.0 310.143 ± 0.391 305.595 ± 17.114

2.0 291.275 ± 0.360 284.338 ± 40.365

3.0 286.719 ± 0.352 276.315 ± 24.448

4.0 285.546 ± 0.326 283.904 ± 5.489

5.0 285.627 ± 0.340 285.307 ± 3.386

10.0 287.163 ± 0.285 286.943 ± 2.483

β β < Sb > β < Sb >W

0.5 283.02 ± 2.166 285.369 ± 4.369

1.0 458.823 ± 1.707 459.028 ± 7.847

2.0 509.266 ± 0.628 504.264 ± 38.233

3.0 503.627 ± 0.784 496.215 ± 46.938

4.0 507.243 ± 0.609 505.991 ± 13.837

5.0 507.412 ± 1.028 506.915 ± 14.778

10.0 511.561 ± 0.570 511.715 ± 5.386

Table 1: β < Sb > for quenched and unquenched phase on 8x8, 12x12 and 16x16 lattices.

0 2 4 6 8 10

β

0

0.1

0.2

0.3

0.4

<1/ρ2ψψ>/m
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8x8 Lattice

16x16 Lattice

Figure 12: < 1/ρ2ψψ > /mB

6. Conclusions

This paper is devoted to a study of the N = 2 supersymmetric sigma model regulated on

a lattice. The lattice formulation we employ was derived in an earlier paper [1] and results

from a discretization of a twisted version of the continuum theory. The twisting process is
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to be viewed as a change of variables (we are in flat space) and has the merit of exposing

a nilpotent scalar supersymmetry Q which can be preserved under discretization. In this

paper we extend our previous work by introducing a modified Wilson operator in the form

of a twisted mass term which is used to remove doubler modes from our lattice theory

without spoiling the Q-exact property of the lattice action. The introduction of such a

mass term is compatible with supersymmetry if it takes the form of a holomorphic Killing

vector in the target space [40] and corresponds to the addition of central charges in the

supersymmetry algebra. The replacement of a simple mass term with a Wilson difference

operator breaks supersymmetry softly and is not expected to lead to additional fine tuning.

We study the CP 1 ∼ O(3)-model in detail using the RHMC algorithm on lattices as large

as 162 over a range of coupling β = 0.5 → 10.0. Our results for both the spectrum and

Ward identities provide strong evidence for a restoration of full supersymmetry at large

β and small lattice spacing without additional fine tuning. Notice that while the Ward

identities are examples of trivial topological observables the mass spectrum we measure is

non-topological. Further investigations of such physical observables are underway and will

published elsewhere [41]. We are also able to see a non-zero chiral condensate and this

appears to persist into the continuum limit as expected from the chiral anomaly. It would

be very interesting to extend this work to the general CPN−1 models where the numerical

results could be compared with exact results on the low lying mass spectrum [42].
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A. Notations

A real system is denoted by x1, x2 which combine to give holomorphic coordinates,

z = x1 + ix2, z̄ = x1 − ix2 (A.1)

Then a vector V µ with components (V 1, V 2) has holomorphic components,

V+ =
1

2
(V1 − iV2), V− =

1

2
(V1 + iV2) (A.2)

The Dirac matrices γµ are given by (Chiral basis),

(γ1) β
α = σ1, (γ2) β

α = σ2 (A.3)

Spinor indices are raised and lowered by the matrix Cαβ = σ1,

(γµ)αβ = (γµ) τ
α Cτβ (A.4)

thus for a vector V µ,

γµ
++Vµ = V1 − iV2 = V+ (A.5)

γµ
−−Vµ = V1 + iV2 = V− (A.6)
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For a Kähler manifold, the metric is given by,

gIJ̄ = ∂I∂J̄K (A.7)

where K is a Kähler potential. (Note that gĪ J̄ = gIJ = 0 for a almost complex manifold).

The non vanishing components of the Christoffel symbols are then,

ΓI
JK = gIL̄∂JgKL̄, ΓĪ

J̄K̄ = gĪL∂J̄gLK̄ (A.8)

This implies the only non-trivial components of the Riemann tensor are,

RĪJK̄L = gĪM∂K̄ΓM
JL, or RI

JK̄L = ∂K̄ΓI
JL, (A.9)

B. Twisted N = 2 supersymmetry algebra

The algebra of N = 2 supersymmetry in 2 space dimensions is given by [28],

{Qα+, Qβ−} = γµ
αβPµ, [R,Qα±] = ±1

2Qα±

{Qα+, Qβ+} = {Qα−, Qβ−} = 0, [J, Pµ] = −iε ν
µ Pν

[Qαa, Pµ] = [Pµ, Pν ] = 0, [R,Pµ] = 0

[J,Q±a] = ±1
2Q±a, [J,R] = [J, J ] = [R,R] = 0

(B.1)

where J is the generator of Lorentz SO(2) symmetry and R is the generator of the internal

SO(2) symmetry. In order to obtain some scaler charges, one perform a twisting that

changes the spin of the above charges. In order to do this we need to redefine the Lorentz

generator. Indeed if we take (see appendix A for our notations),

J̃ = J + R (B.2)

with respect to this new generator one finds that Q+− and Q−+ behave as scalars while

the pair Q++ and Q−− as vectors. To make manifest the new Lorentz structure of each of

the generators we define,
QL = Q+−

QR = Q−+

Q++ = γµ
++Gµ = G+

Q−− = γµ
−−Gµ = G−

it is clear from (B.1) that,

Q2
L = Q2

R = {QL, QR} = 0 (B.3)

The algebra (B.1) in terms of the new Lorentz generator J̃ and the following redefined

operators,

Q = QL + QR, M = QL − QR (B.4)

is
Q2 = M2 = {Q,M} = [Q,Pµ] = [M,Pµ] = 0

{Q,Gµ} = Pµ

[Q, J̃ ] = [M, J̃ ] = 0

{M,Gµ} = −iε ν
µ Pν

[J̃ , Pµ] = −iε ν
µ Pν

[J̃ , Gµ] = −iε ν
µ Gν

[Pµ, Pν ] = {Gµ, Gν} = [J̃ , J̃ ] = 0

(B.5)
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in addition, the action of the R generator on the new twisted charges is,

[R,Q] = −1
2M

[R,M ] = −1
2Q

[R,Gµ] = − i
2ε ν

µ Gν

[R,R] = [R, J̃ ] = [R,Pµ] = 0

(B.6)

Let our field content be φi, Bi
α, ψi and ηi

α or on the complex manifold φI , BI
+, ψI and

ηI
+. The R-transformations of these fields is given by

[R,φI ] = 0, [R,φĪ ] = 0

[R,ψI ] = 1
2ψI , [R,ψĪ ] = −1

2ψĪ

[R, ηI
+] = 1

2ηI
+, [R, ηĪ

−] = −1
2ηĪ

−

[R,BI
+] = BI

+, [R,B Ī
−] = −B Ī

−

(B.7)

More importantly the transformation of our fields under the twisted charges Q,M,G+

and G− is given by, for Q,

QφI = ψI QφĪ = ψĪ

QψI = 0 QψĪ = 0

QηI
+ = BI

+ − ΓI
KJψJηK

+ QηĪ
− = B Ī

− − ΓĪ
K̄J̄

ψJ̄ηK̄
−

QBI
+ = −ΓI

JKψJBK
+ − RI

KJ̄L
ψKψJ̄ηL

+ QB Ī
− = −ΓĪ

J̄K̄
ψJ̄BK̄

− − RĪ
J̄LK̄

ψJ̄ψLηK̄
−

(B.8)

for M

MφI = −ψI MφĪ = ψĪ

MψI = 0 MψĪ = 0

MηI
+ = −(BI

+ − ΓI
KJψJηK

+ ) MηĪ
− = B Ī

− − ΓĪ
K̄J̄

ψJ̄ηK̄
−

MBI
+ = ΓI

JKψJBK
+ − RI

KL̄J
ψJψL̄ηK

+ MB Ī
− = −ΓĪ

J̄K̄
ψJ̄BK̄

− + RĪ
K̄LJ̄

ψJ̄ψLηK̄
−

(B.9)

for G+

G+φI = 1
2ηI

+ G+φĪ = 0

G+ψI = −1
2(BI

+ − ΓI
KJψJηK

+ ) G+ψĪ = 0

G+ηI
+ = 0 G+ηĪ

− = 0

G+BI
+ = −1

2ΓI
JKBJ

+ηk
+ G+B Ī

− = ∂+ηĪ
− − 1

2RĪ
K̄LJ̄

ψJ̄ηL
+ηK̄

−

(B.10)

and finally for G−,

G−φI = 0 G−φĪ = 1
2ηĪ

−

G−ψI = 0 G−ψĪ = −1
2(B Ī

− − ΓĪ
K̄J̄

ψJ̄ηK̄
− )

G−ηI
+ = 0 G−ηĪ

− = 0

G−BI
+ = ∂−ηI

+ − 1
2RI

KL̄J
ψJηL̄

−ηK
+ G−B Ī

− = −1
2ΓĪ

J̄K̄
BJ̄

−ηk̄
−

(B.11)
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[30] L. Alvarez-Gaumé and D.Z. Freedman, Geometrical structure and ultraviolet finiteness in the

Supersymmetric Sigma Model, Commun. Math. Phys. 80 (1981) 443.

[31] M.A. Clark, A.D. Kennedy and Z. Sroczynski, Exact 2 + 1 flavour RHMC simulations, Nucl.

Phys. 140 (Proc. Suppl.) (2005) 835 [hep-lat/0409133].

[32] S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B

195 (1987) 216.

[33] B. Jegerlehner, Krylov space solvers for shifted linear systems, hep-lat/9612014.

[34] D. Birmingham, M. Blau, M. Rakowski and G. Thompson, Topological field theory, Phys.

Rept. 209 (1991) 129.

[35] V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Two-dimensional sigma

models: modeling nonperturbative effects of quantum chromodynamics, Phys. Rept. 116

(1984) 103.

[36] H. Bohr, E. Katznelson and K.S. Narain, On supersymmetry breaking by instanton effects,

Nucl. Phys. B 238 (1984) 407.

[37] T.J. Hollowood, V.V. Khoze, W.-J. Lee and M.P. Mattis, Breakdown of cluster decomposition

in instanton calculations of the gluino condensate, Nucl. Phys. B 570 (2000) 241

[hep-th/9904116].

[38] N.M. Davies, T.J. Hollowood, V.V. Khoze and M.P. Mattis, Gluino condensate and magnetic

monopoles in supersymmetric gluodynamics, Nucl. Phys. B 559 (1999) 123

[hep-th/9905015].

[39] E. Witten, Constraints on supersymmetry breaking, Nucl. Phys. B 202 (1982) 253.
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